Part Number Hot Search : 
07FKE 80012 BT390 AP148 IRF1010 A9500 C001G2 TDA3508
Product Description
Full Text Search
 

To Download DSB-DSS-ST2-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  03/10/2016 v6.0 1 features: > high brightness surface mount led. > designed for sideway illumination. > 120 viewing angle. > small package outline. > qualified according to jedec moisture sensitivity level 2. > compatible to ir reflow soldering. > environmental friendly; rohs compliance. > compliance to auntomotive standard; aec-q101. > passed corrosion resistant test. appx. 4.1 domiled synonymous with function and performance, the domiled tm series is perfectly suited for a variety of cross-industrial applications due to its small package outline, durability and superior brightness. data sheet: right angle domiled ingan : dsx-dss ? 2005 domiled is a trademark of dominant opto technologies. all rights reserved. product specifcations are subject to change without notice. applications: > automotive: interior applications, eg: switches, telematics, climate control system, dash board, etc. > consumer appliances: lcd illumination as in pdas, lcd tv. > display: full color display video notice board. > industry: white goods (eg: oven, microwave, etc.). dominant opto technologies innovating illumination tm
03/10/2016 v6.0 2 DSB-DSS-ST2-1 dst-dss-wx1-1 dst-dss-vw1-1 blue, 470nm true green, 525nm true green, 525nm 120 120 120 180.0 1125.0 715.0 ingan : dsx-dss part ordering number color viewing angle? luminous intensity @ if = 20ma iv (mcd) appx. 1.1 min. typ. max. 220.0 1700.0 950.0 450.0 2240.0 1400.0 optical characteristics at tj=25?c typ. (v) vf @ if = 20ma appx. 3.1 electrical characteristics at tj=25?c max. (v) vr @ ir = 10ua min. (v) part number dsx-dss 3.2 3.8 5.0 min. (v) 2.9 unit absolute maximum ratings maximum value dc forward current peak pulse current; (tp 10s, duty cycle = 0.005) reverse voltage; ir (max) = 10ua esd threshold (hbm) led junction temperature operating temperature storage temperature power dissipation (at room temperature) thermal resistance - junction / ambient, r th ja - junction / solder point, r th js (mounting on fr4 pcb, pad size >= 5 mm 2 per pad) 20 100 5 1000 120 -40 +100 -40 +100 80 460 240 ma ma v v ?c ?c ?c mw k/w k/w dominant opto technologies innovating illumination tm
03/10/2016 v6.0 3 ingan : dsx-dss group wavelength grouping wavelength distribution (nm) appx. 2.2 color dsb;blue dst; true green full a b full a b c 465 - 475 465 - 470 470 - 475 520 - 535 520 - 525 525 - 530 530 - 535 vr @ ir = 10ua dominant opto technologies innovating illumination tm
03/10/2016 v6.0 4 ingan : dsx-dss s1 s2 t1 t2 v1 v2 w1 w2 x1 180.0 ... 224.0 224.0 ... 285.0 285.0 ... 355.0 355.0 ... 450.0 715.0 ... 900.0 900.0 ... 1125.0 1125.0 ... 1400.0 1400.0 ... 1800.0 1800.0 ... 2240.0 brightness group luminous intensity appx. 1.1 iv (mcd) luminous intensity group at tj=25?c dominant opto technologies innovating illumination tm
03/10/2016 v6.0 5 ingan : dsx-dss dominant opto technologies innovating illumination tm forward current vs forward voltage i f = f (v f ); t j = 25c forward voltage v f (v) forward current i f (ma) forward current i f (ma) relative luminous intensity i rel relative luminous intensity vs forward current i v /i v ( 20ma) = f(i f ); tj = 25c forward current i f (ma) temperature t(c) maximum current vs temperature i f =f(t) relative spectral emission i rel = f(); t j = 25c; i f = 20 ma relative luminous intensity i rel wavelength (nm) allowable forward current i f ( ma ) duty ratio, % allowable forward current vs duty ratio ( t j = 25c; t p 10s) forward current i f (ma) relative wavelength shift vs forward current dom = f(i f ); tj = 25c relative wavelength rel (nm) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 5 10 15 20 0 5 10 15 20 2.7 2.8 2.9 3.0 3.1 3.2 3.3 forward current i f (ma) forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 true  green blue wavelength  (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100 110 t s t a  =  ambient  temperature t s  =  solder  point  temperature allowable forward current i f ( ma ) allowable forward current vs duty ratio ( t j = 25c; t p ? 10  s ) duty ratio, % 10 100 1000 0.1 1 10 100 relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f(  ); t j = 25c; i f = 20ma 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 5 10 15 20 0 5 10 15 20 2.7 2.8 2.9 3.0 3.1 3.2 3.3 forward current i f (ma) forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 true  green blue wavelength  (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100 110 t s t a  =  ambient  temperature t s  =  solder  point  temperature allowable forward current i f ( ma ) allowable forward current vs duty ratio ( t j = 25c; t p ? 10  s ) duty ratio, % 10 100 1000 0.1 1 10 100 relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f(  ); t j = 25c; i f = 20ma 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 5 10 15 20 0 5 10 15 20 2.7 2.8 2.9 3.0 3.1 3.2 3.3 forward current i f (ma) forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 true  green blue wavelength  (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100 110 t s t a  =  ambient  temperature t s  =  solder  point  temperature allowable forward current i f ( ma ) allowable forward current vs duty ratio ( t j = 25c; t p ? 10  s ) duty ratio, % 10 100 1000 0.1 1 10 100 relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f(  ); t j = 25c; i f = 20ma 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 5 10 15 20 0 5 10 15 20 2.7 2.8 2.9 3.0 3.1 3.2 3.3 forward current i f (ma) forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 true  green blue wavelength  (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100 110 t s t a  =  ambient  temperature t s  =  solder  point  temperature allowable forward current i f ( ma ) allowable forward current vs duty ratio ( t j = 25c; t p ? 10  s ) duty ratio, % 10 100 1000 0.1 1 10 100 relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f(  ); t j = 25c; i f = 20ma 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 5 10 15 20 0 5 10 15 20 2.7 2.8 2.9 3.0 3.1 3.2 3.3 forward current i f (ma) forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 true  green blue wavelength  (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) t a 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100 110 t s t a  =  ambient  temperature t s  =  solder  point  temperature allowable forward current i f ( ma ) allowable forward current vs duty ratio ( t j = 25c; t p ? 10  s ) duty ratio, % 10 100 1000 0.1 1 10 100 relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f(  ); t j = 25c; i f = 20ma -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0 5 10 15 20 25 30 35 40 45 50 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 0 5 10 15 20 relative wavelength  rel (nm) relative wavelength shift vs forward current  dom = f(i f ); t j = 25c forward current i f (ma) cx, cy chromaticity coordinate shift vs forward current cx, cy = f(i f );t j = 25c forward current i f (ma) true  green blue
03/10/2016 v6.0 6 ingan : dsx-dss dominant opto technologies innovating illumination tm junction temperature t j (c) relative forward voltage ?v f (v) relative forward voltage vs junction temperature ?v f = v f - v f ( 25c) = f(t j ); i f =20m a junction temperature t j (c) relative luminous intensity i rel relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i f = 20ma junction temperature t j (c) relative wavelength ?dom(nm) relative wavelength vs junction temperature ?dom = dom - dom (25c) = f(tj); if =20ma radiation pattern 0. 2 70 90 80 0 60 50 40 30 20 0. 6 0. 4 1. 0 0. 8 10 0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 relative forward voltage v f (v) relative forward voltage vs junction temperature v f = v f - v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel true  green blue true  green blue -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 relative forward voltage v f (v) relative forward voltage vs junction temperature v f = v f - v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel true  green blue true  green blue -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 -50 -30 -10 10 30 50 70 90 110 130 cx cy - 0.030 - 0.025 - 0.020 - 0.015 - 0.010 - 0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 -50 -30 -10 10 30 50 70 90 110 130 relative wavelength  dom (nm) relative wavelength vs junction temperature  dom =  dom -  dom (25c) = f(t j ); i f = 20ma cx, cy chromaticity coordinate shift vs junction temperature cx, cy = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) true  green blue
03/10/2016 v6.0 7 domiled tm ? ingan : dsx-dss package outlines ingan : dsx-dss material material lead-frame package encapsulant soldering leads cu alloy with ag plating high temperature resistant plastic, ppa epoxy sn-sn plating dominant opto technologies innovating illumination tm note : primary thermal path is through cathode lead of led package.
03/10/2016 v6.0 8 ingan : dsx-dss recommended solder pad dominant opto technologies innovating illumination tm
03/10/2016 v6.0 9 taping and orientation ? reels come in quantity of 2500 units. ? reel diameter is 180 mm. ingan : dsx-dss dominant opto technologies innovating illumination tm
03/10/2016 v6.0 10 packaging specifcation ingan : dsx-dss dominant opto technologies innovating illumination tm 28/10/2010 v8.0 10 packaging specifcation allngap : ddx-xrs dominant opto technologies innovating illumination tm
03/10/2016 v6.0 11 ingan : dsx-dss dominant opto technologies innovating illumination tm packaging specifcation average 1pc right angle domiled 1 completed bag (2500pcs) 0.034 190 10 weight (gram) cardboard box dimensions (mm) empty box weight (kg) super small small medium large for right angle domiled reel / box cardboard box size weight (gram) 0.010 240 10 dominant tm moisture sensitivity level moisture absorbent material + moisture indicator the reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag reel barcode label label (l) lot no : lotno (p) part no : partno (c) cust no : partno (g) grouping : group (q) quantity : quantity (d) d/c : date code (s) s/n : serial no dominant opto technologies ml temp 2 260?c rohs compliant made in malaysia dominant opto technologies drnd - 008 issue no : 1 page 1 of 3 pr oduct & process change notice ( pcn) pcn n o: d 140157 date : 2 1 - nov - 20 1 4 1. describe present process / product: all smd leds that are currently shipped in the reel form . please refer to section 3 for the details; comparing current packing and label specification versus change proposed . 2. product type affected: all smd leds that are currently shipped in the reel form . 3. describe changes (to be): existing barcode printed label (bpl) used is as shown below. existing bpl size - 87mm x 45mm . as part of improvement and also in response to customer s request; bpl format will be changed to the following. new bpl size - 110mm x 55mm . additional information are now included in the label. 2d and 3d barcode data are implemented now for every data field. 325 x 225 x 190 325 x 225 x 280 570 x 440 x 230 570 x 440 x 460 0.38 0.54 1.46 1.92 7 reels max 11 reels max 48 reels max 96 reels max
03/10/2016 v6.0 12 time (sec) 0 50 100 150 200 300 250 225 200 175 150 125 100 75 50 25 275 temperature (?c) classifcation refow profle (jedec j-std-020c) ramp-up 3?c/sec max. 255-260?c 10-30s 60-150s ramp- down 6?c/sec max. preheat 60-180s 480s max 217?c recommended pb-free soldering profle ingan : dsx-dss dominant opto technologies innovating illumination tm
03/10/2016 v6.0 13 ingan : dsx-dss dominant opto technologies innovating illumination tm appendix 1) brightness: 1.1 luminous intensity is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 1.2 luminous fux is measured with an internal reproducibility of 8 % and an expanded uncertainty of 1 1 % (according to gum with a coverage factor of k=3). 2) color: 2.1 chromaticity coordinate groups are measured with an internal reproducibility of 0.005 and an expanded uncertainty of 0.01 (accordingly to gum with a coverage factor of k=3). 2.2 dominant wavelength is measured with an internal reproducibility of 0.5nm and an expanded uncertainty of 1nm (accordingly to gum with a coverage factor of k=3). 3) voltage: 3.1 forward voltage, vf is measured with an internal reproducibility of 0.05v and an expanded uncertainty of 0.1v (accordingly to gum with a coverage factor of k=3). 4) corrosion robustness: 4.1 test conditions: 40 c / 90 % rh / 15 ppm h 2 s / 336 h. = stricter than iec 60068-2-43 (h 2 s) [25 c / 75% rh / 10 ppm h 2 s / 21 days].
revision history note all the information contained in this document is considered to be reliable at the time of publishing. however, dominant opto technologies does not assume any liability arising out of the application or use of any product described herein. dominant opto technologies reserves the right to make changes to any products in order to improve reliability, function or design. dominant opto technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of dominant opto technologies . page - 1, 9 1 2 1, 6, 8, 10 5, 6, 7, 13 subjects initial release - update product photo - error in carrier tape update application add new partno: dst-dss-wx1-1 add thermal resistance add fetures add notes in packaging outline update carrier tape update packaging specifcation update features update graph update package outline add appendix date of modifcation 04 aug 2010 21 jun 2012 13 sep 2013 25 oct 2013 10 mar 2016 03 oct 2016 ingan : dsx-dss 03/10/2016 v6.0 14 dominant opto technologies innovating illumination tm
ingan : dsx-dss about us dominant opto technologies is a dynamic malaysian corporation that is among the worlds leading smt led manufacturers. an excellence C driven organization, it offers a comprehensive product range for diverse industries and applications. featuring an internationally certifed quality assurance acclaim, dominants extra bright leds are perfectly suited for various lighting applications in the automotive, consumer and communications as well as industrial sectors. with extensive industry experience and relentless pursuit of innovation, dominants state-of-art manufacturing, research and testing capabilities have become a trusted and reliable brand across the globe. more information about dominant opto technologies can be found on the internet at http://www.dominant-semi.com. dominant opto technologies innovating illumination tm please contact us for more information: dominant opto technologies sdn. bhd. lot 6, batu berendam, ftz phase iii, 75350 melaka, malaysia tel: (606) 283 3566 fax: (606) 283 0566 e-mail: sales@dominant-semi.com


▲Up To Search▲   

 
Price & Availability of DSB-DSS-ST2-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X